Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
data.nitrates
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
DREAL Pays de la Loire
Centre de Services de la Donnée
Eau et milieux aquatiques
data.nitrates
Merge requests
!22
Intégration des paramètres version, last_year et filepath_data_ars
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Intégration des paramètres version, last_year et filepath_data_ars
dev
into
master
Overview
0
Commits
90
Pipelines
1
Changes
1
Merged
ronan.vignard
requested to merge
dev
into
master
9 months ago
Overview
0
Commits
90
Pipelines
1
Changes
1
Expand
0
0
Merge request reports
Viewing commit
e90b9c4d
Prev
Next
Show latest version
1 file
+
231
−
0
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
e90b9c4d
Création du flat pour insérer les données ARS consolidées dans la table des analyses
· e90b9c4d
ronan.vignard
authored
11 months ago
dev/flat_insert_ars_into_analyse.Rmd
0 → 100644
+
231
−
0
Options
---
title: "Insertion des pr\u00e9l\u00e8vements ARS"
output: html_document
editor_options:
chunk_output_type: console
---
```{r development, include=FALSE}
library(testthat)
library(datalibaba)
library(dplyr)
library(stringr)
library(glue)
library(DBI)
library(RPostgres)
```
```{r development-load}
# Load already included functions if relevant
pkgload::load_all(export_all = FALSE)
```
# Consolidation et insertion des données de l'ARS dans la table des prélèvements
## Chargement des données ARS brutes
La table des données brutes Nitrates de l'ARS est chargée :
```{r load-nitrate_data_analyse_ars, eval=FALSE}
nitrate_data_analyse_ars <- datalibaba::importer_data(
table = "nitrate_data_analyse_ars",
schema = "nitrates",
db = "si_eau",
user = "admin"
)
```
## Consolidation des données ARS
On supprime les enregistrements correspondants à des totaux :
```{r filter-param_nom_ars, eval=FALSE}
nitrate_data_analyse_ars_test <- nitrate_data_analyse_ars |>
dplyr::filter(!stringr::str_starts(param_nom, "Total"))
```
On remplace les chaînes de caractère par NA dans la variable `ana_param_alpha_resultat` :
```{r}
nitrate_data_analyse_ars_test <- nitrate_data_analyse_ars_test |>
dplyr::mutate(
ana_param_alpha_resultat = dplyr::case_when(
ana_param_alpha_resultat %in% c("TRACES", "PRESENCE", "SEUIL", "ILLISIBL", "N.M.", "O", "?", " ") ~ NA_character_,
TRUE ~ ana_param_alpha_resultat
)
)
```
On remplace les points par des virgules dans ana_param_alpha_resultat :
```{r replace-dot_ana_param_alpha_resultat, eval=FALSE}
# Remplacer les valeurs dans la colonne ana_param_alpha_resultat
nitrate_data_analyse_ars_test <- nitrate_data_analyse_ars_test |>
dplyr::mutate(ana_param_alpha_resultat =
stringr::str_replace(ana_param_alpha_resultat, "^.$", ","))
```
```{r mutate-from_ana_param_alpha_resultat, eval=FALSE}
nitrate_data_analyse_ars <- nitrate_data_analyse_ars |>
mutate(
# Ajout de la colonne code_remarque selon la condition spécifiée
code_remarque = dplyr::case_when(
stringr::str_starts(ana_param_alpha_resultat, "<") ~ 10,
TRUE ~ 1
),
# Renommage conditionnel des colonnes
resultat_analyse = dplyr::case_when(
stringr::str_starts(ana_param_alpha_resultat, "<") ~ as.character(ana_param_valeur_traduite),
TRUE ~ ana_param_alpha_resultat
),
limite_quantification = dplyr::case_when(
stringr::str_starts(ana_param_alpha_resultat, "<") ~ ana_param_alpha_resultat,
TRUE ~ NA_character_ # Utilisation de NA pour les valeurs non pertinentes
)
)
```
On sélectionne les champs utiles à la table des analyses :
```{r select-variables-ars, eval=FALSE}
# Sélectionner les variables
nitrate_data_analyse_ars <- nitrate_data_analyse_ars |>
dplyr::select(code_station = ins_code_national,
code_intervenant = geo_dept_ddass_gest_code,
date_prelevement = plv_date,
nom_parametre = param_nom,
date_analyse = anl_date_fin_analyse,
resultat_analyse,
limite_quantification,
code_parametre = param_code)
```
# Consolidation de la variable `resultat_analyse`
```{r select-param_nom_ars, eval=FALSE}
nitrate_data_analyse_ars <- nitrate_data_analyse_ars |>
dplyr::filter(!stringr::str_starts(ana_param_alpha_resultat, "<"))
```
On remplace "h" par ":" dans la variable `plv_heure` :
```{r replace-in_plv_heure, eval=FALSE}
# Remplacer "h" par ":" dans la colonne plv_heure
nitrate_data_analyse_ars <- nitrate_data_analyse_ars |>
dplyr::mutate(plv_heure = stringr::str_replace_all(plv_heure, "h", ":"))
```
On ajoute les variables `source` et `code_support` :
```{r add-source_code_support_ars, eval=FALSE}
# Ajouter les variables source et code_support
nitrate_data_analyse_ars <- nitrate_data_analyse_ars |>
dplyr::mutate(
source = "ARS",
code_support = 3
)
```
On remplace "h" par ":" dans la variable `plv_heure` :
```{r replace-in_plv_heure, eval=FALSE}
# Remplacer "h" par ":" dans la colonne plv_heure
nitrate_data_analyse_ars <- nitrate_data_analyse_ars |>
dplyr::mutate(plv_heure = stringr::str_replace_all(plv_heure, "h", ":"))
```
On dédoublonne les lignes en utilisant les champs `code_station` et `date_prelevement`
afin de ne conserver qu'un prélèvement par station et date donnée :
```{r select-distinct-rows-ars, eval=FALSE}
# Dédoublonner les lignes sur les colonnes code_station et date_prelevement
nitrate_data_analyse_ars <- nitrate_data_analyse_ars |>
dplyr::distinct(code_station, date_prelevement, .keep_all = TRUE)
```
```{r function-add_code_analyse, eval=FALSE}
#' Ajouter une variable code_analyse au dataframe
#'
#' @description Cette fonction ajoute une nouvelle variable `code_analyse`
#' au dataframe en utilisant une séquence PostgreSQL dynamique. La séquence est
#' construite en fonction du paramètre `version` fourni.
#'
#' @param dataframe Un dataframe contenant les données sur lesquelles ajouter
#' la variable `code_analyse`.
#' @param version Une chaîne de caractères représentant la version de la
#' séquence à utiliser.
#'
#' @return Un dataframe avec une nouvelle colonne `code_analyse` contenant
#' les valeurs de la séquence PostgreSQL.
#'
#' @importFrom DBI dbGetQuery dbDisconnect
#' @importFrom dplyr mutate
#' @importFrom glue glue
#' @importFrom datalibaba connect_to_db
#' @export
add_code_analyse <- function(dataframe, version) {
# Établir une connexion à la base de données PostgreSQL
connexion <- datalibaba::connect_to_db(db = "si_eau", user = "admin")
# Construire le nom de la séquence
sequence_name <- glue::glue("nitrates.nitrate_prelevement_{version}_code_analyse_seq")
# Initialiser une liste pour stocker les valeurs de la séquence
code_analyses <- c()
# Pour chaque ligne du dataframe, obtenir une valeur de la séquence
for (i in 1:nrow(dataframe)) {
query <- glue::glue("SELECT nextval(\'{sequence_name}\') AS code_analyse")
result <- DBI::dbGetQuery(connexion, query)
code_analyses <- c(code_analyses, result$code_analyse)
}
# Ajouter la nouvelle variable au dataframe
dataframe <- dataframe |>
dplyr::mutate(code_analyse = code_analyses)
# Fermer la connexion à la base de données
DBI::dbDisconnect(connexion)
return(dataframe)
}
```
On ajoute un identifiant unique s'appuyant sur une séquence stockée en base :
```{r add_code_analyse_ars, eval=FALSE}
# Utiliser la fonction add_code_analyse_ars avec la version souhaitée
nitrate_data_analyse_ars <- add_code_analyse(
nitrate_data_analyse_ars, "v0_15")
# Afficher le dataframe pour vérifier les modifications
print(nitrate_data_analyse_ars)
```
On charge les données consolidées dans un table dédiée :
```{r insert-into_nitrate_prelevement_v0_15, eval=FALSE}
# Charger les données dans une nouvelle table en base
datalibaba::poster_data(data = nitrate_data_analyse_ars,
table = "nitrate_prelevement_ars_v0_15",
schema = "nitrates",
db = "si_eau",
overwrite = TRUE,
pk = "code_analyse",
user = "admin")
```
# Insertion des données ARS du nouveau millésime en base dans la table globale
On insère enfin les enregistrements de cette table dans la table globale :
```{r import_and_merge_tables_ars, eval=FALSE}
# Insérer les données de la table du dernier millésime vers la table complète
collectr::import_and_merge_tables(database = "si_eau",
source_table = "nitrate_prelevement_ars_v0_15",
source_schema = "nitrates",
target_table = "nitrate_prelevement_v0_15",
target_schema = "nitrates",
role = "admin")
```
```{r development-inflate, eval=FALSE}
# Run but keep eval=FALSE to avoid infinite loop
# Execute in the console directly
fusen::inflate(flat_file = "dev/flat_insert_ars_into_prelevement.Rmd", vignette_name = "Insertion des pr\u00e9l\u00e8vements ARS")
```
Loading