diff --git a/data-raw/chargement_prec_nrj.R b/data-raw/chargement_prec_nrj.R
deleted file mode 100644
index 97c85666908dc99738a00e1121066fe9cf51d465..0000000000000000000000000000000000000000
--- a/data-raw/chargement_prec_nrj.R
+++ /dev/null
@@ -1,49 +0,0 @@
-
-# chargement_prec_nrj
-
-# vulnérabilité énergétqiue - AT44 INSEE-SOES
-
-# librairies --------------
-library(dplyr)
-library(tidyr)
-library(purrr)
-library(lubridate)
-library(forcats)
-library(datalibaba)
-library(googlesheets4)
-library(stringr)
-
-rm(list=ls())
-
-
-# chargement data -----------
-# precarite_energetique <- read.sas7bdat("extdata/AT44_prec_energ/baseat44compl.sas7bdat") 
-# load("extdata/AT44_prec_energ/baseat44compl.RData")
-
-precarite_energetique <- readRDS("extdata/baseat44compl.rds")
-
-prec_nrj <- precarite_energetique %>%
-  select(depcom, pondl, starts_with("nbpers14"), starts_with("energie"), starts_with("prec")) %>% 
-  as_tibble() %>%
-  group_by(depcom) %>%
-  summarise(nb_men = sum(pondl), pop2011 = sum(nbpers14p + nbpers14m), nb_men_prec_lgt = sum(pondl * preclog), nb_men_prec_carbu = sum(pondl * precdp),
-            nb_pers_prec_lgt = sum(pondl*preclog*(nbpers14p+nbpers14m)), nb_pers_prec_carbu=sum(pondl*precdp*(nbpers14p+nbpers14m)),
-            energiea = weighted.mean(energiea, pondl), energieb = weighted.mean(energieb, pondl), 
-            energiec = weighted.mean(energiec, pondl), energied = weighted.mean(energied, pondl),
-            energiee = weighted.mean(energiee, pondl), energief = weighted.mean(energief, pondl),
-            energieg = weighted.mean(energieg, pondl), energieh = weighted.mean(energieh, pondl),
-            energiei = weighted.mean(energiei, pondl)) %>%
-  ungroup() %>%
-  mutate(across(starts_with("energie"), ~ nb_men*./100),  # transformation des % en nombre de logements
-         date = make_date(2014, 01, 01), 
-         across(where(is_character), as.factor),
-         across(where(is.factor), fct_drop))
-
-
-# versement dans le sgbd/datamart.portrait_territoires -------------
-
-source("R/poster_documenter_data.R")
-poster_documenter_it(df = prec_nrj, nom_table_sgbd = "source_prec_nrj", comm_source_en_plus = "Investissement AT 44.")
-
-
-rm(list=ls())
diff --git a/data-raw/chargement_superficie_territoires.R b/data-raw/chargement_superficie_territoires.R
index b3a2fbbc8e3712561ebf189f5cec558256626e5f..989c5cfadd6392f6c2dadf13d89e858a9796051f 100644
--- a/data-raw/chargement_superficie_territoires.R
+++ b/data-raw/chargement_superficie_territoires.R
@@ -5,7 +5,7 @@ rm(list = ls())
 
 library(magrittr)
 
-annee_cogiter <- "2023"
+annee_cogiter <- "2024"
 
 # calcul -----------
 superficie_territoires <- COGiter::communes_geo %>%
diff --git a/data-raw/cogification_prec_nrj.R b/data-raw/cogification_prec_nrj.R
deleted file mode 100644
index 34458dce5470815a5d8ee1746e47f4d2d55902e5..0000000000000000000000000000000000000000
--- a/data-raw/cogification_prec_nrj.R
+++ /dev/null
@@ -1,23 +0,0 @@
-
-# cogification_prec_nrj
-
-rm(list = ls())
-
-# librairies ------
-library(datalibaba)
-library(dplyr)
-library(COGiter)
-source("R/cogifier_it.R")
-source("R/poster_doc_post_cogifier.R")
-
-# cogification
-cogifier_it(nom_source = "prec_nrj")
-
-# # verif na dans EPCI à cheval
-# df_cog <- importer_data(db = "datamart", schema = "portrait_territoires",
-#                         table = paste0("cogifiee_", "prec_nrj"))
-
-# versement dans le sgbd/datamart.portrait_territoires et metadonnee -------------
-poster_documenter_post_cogifier(source = "prec_nrj")
-
-rm(list=ls())
\ No newline at end of file
diff --git a/data-raw/indicateur_prec_nrj.R b/data-raw/indicateur_prec_nrj.R
deleted file mode 100644
index cc2bec437f2b2b31dcb2dfa7c5c0453f10e6a1ac..0000000000000000000000000000000000000000
--- a/data-raw/indicateur_prec_nrj.R
+++ /dev/null
@@ -1,44 +0,0 @@
-
-# indicateur_prec_nrj
-
-# indicateurs précarité énergétique du kit data PCAET
-# pe_lgt
-# pe_carbu
-# nb_lgt_FGH
-# indicateurs de diffusabilité = pop2011 > 27500hab, pour variables précédemment chargées
-rm(list = ls())
-
-# librairies ----------
-library(dplyr)
-library(tidyr)
-library(datalibaba)
-source("R/poster_documenter_ind.R")
-
-
-# chargement data ----------
-
-cogifiee_prec_nrj0 <- importer_data(table = "cogifiee_prec_nrj", schema = "portrait_territoires", db = "datamart", user = "does")
-cogifiee_prec_nrj <- pivot_longer(cogifiee_prec_nrj0, cols = where(is.numeric),
-                                  names_to = "variable", values_to = "valeur")
-
-
-# calcul ----------
-indicateur_prec_nrj <- cogifiee_prec_nrj %>% 
-  pivot_wider(names_from = variable, values_from = valeur) %>%
-  mutate(diffusable = (pop2011 >= 27500),
-         pe_lgt = if_else(diffusable, nb_men_prec_lgt / nb_men * 100, NA_real_),
-         pe_carbu = if_else(diffusable, nb_men_prec_carbu / nb_men * 100, NA_real_),
-         nb_men_prec_carbu = if_else(diffusable, nb_men_prec_carbu, NA_real_),
-         nb_men_prec_lgt = if_else(diffusable, nb_men_prec_lgt, NA_real_),
-         nb_pers_prec_carbu = if_else(diffusable, nb_pers_prec_carbu, NA_real_),
-         nb_pers_prec_lgt = if_else(diffusable, nb_pers_prec_lgt, NA_real_),
-         nb_lgt_FGH = energief + energieg + energieh + energiei,
-         across(where(is.factor), as.character)) %>% 
-  select(contains("zone"), contains("Zone"), date, contains("_men_"), contains("_pers_"), diffusable:nb_lgt_FGH)
-
-# chargement dans le SGBD des indicateurs calculés et des commentaires-------
-poster_documenter_ind(df = indicateur_prec_nrj, nom_table_sgbd = "indicateur_prec_nrj", 
-                      comm_source_en_plus = "", nom_script_sce = "indicateur_prec_nrj")
-
-rm(list=ls())
-