diff --git a/.gitignore b/.gitignore index ebd418282458bf4e7f8e237c11f8ef79e3bf8a59..f68810f7aa82130304e6148940ddf2e79b5b9e1d 100644 --- a/.gitignore +++ b/.gitignore @@ -9,3 +9,4 @@ Meta www /doc/ /Meta/ +/tableurs/ diff --git a/data-raw/data_tableurs.R b/data-raw/data_tableurs.R new file mode 100644 index 0000000000000000000000000000000000000000..465baad3fcc2e0380e7f3154205a85e31844d51b --- /dev/null +++ b/data-raw/data_tableurs.R @@ -0,0 +1,422 @@ + +library(dplyr) + +ocsge <- propre.artificialisation::ocsge +observatoire_artificialisation <- propre.artificialisation::observatoire_artificialisation +stock_artificialise <- propre.artificialisation::stock_artificialise +population_legale <- propre.artificialisation::population_legale + +# parametres +code_reg <- "52" +millesime_ocsge <- 2016 +millesime_obs_artif <- 2020 +millesime_population <- 2019 +millesime_stock_artif <- 2020 +millesime_debut <- 2016 #millesime debut stock artificialisation (fixe) + + +# carte 1_3 (source OCSGE) --------------- +data <- ocsge %>% + dplyr::filter(grepl(millesime_ocsge, .data$date)) %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::mutate(espace_artificialise_en_hectares=round(.data$espace_artificialise / 10000,0)) + +xlsx::write.xlsx(data,file = "inst/tableurs/ocsge_1_3.xlsx") + + +# graphe 1_6 (source OCSGE) ------------- +ocsge2 <- ocsge %>% + dplyr::mutate(date = lubridate::year(lubridate::as_date(.data$date)), + espace_naturel = .data$autre_surface_naturelle + .data$surface_en_eau + .data$surface_naturelle_boisee) %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::filter(.data$date == millesime_ocsge) %>% + dplyr::select(.data$TypeZone, .data$Zone, .data$CodeZone, + .data$espace_naturel, + .data$espace_agricole, .data$espace_artificialise) +data <- ocsge2 %>% + tidyr::pivot_longer(.data$espace_naturel:.data$espace_artificialise, + names_to = "variable", + values_to = "valeur") %>% + dplyr::group_by(.data$CodeZone) %>% + dplyr::mutate(variable = .data$variable, + valeur = .data$valeur / 10000, + taux = .data$valeur / sum(.data$valeur, na.rm = T) * 100) %>% + dplyr::mutate(variable = forcats::fct_relevel(variable,"espace_naturel","espace_agricole","espace_artificialise")) %>% + dplyr::ungroup() +rm(ocsge2) + +xlsx::write.xlsx(data,file = "inst/tableurs/ocsge_1_6_et_1_7.xlsx") + + +# source observatoire artificialisation 2_2_et_2_3_2_4_et_2_7--------- +# donnees observatoire artificialisation completes sur 10 ans +# communes et epci region +observatoire_artificialisation_0a <- observatoire_artificialisation %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::filter(.data$TypeZone == "Communes" | .data$TypeZone == "Epci") + # autres zones france +observatoire_artificialisation_0b <- observatoire_artificialisation %>% + dplyr::filter(.data$TypeZone != "Communes" , .data$TypeZone != "Epci") +# regroupement des donnees +observatoire_artificialisation_0 <- dplyr::bind_rows(observatoire_artificialisation_0a,observatoire_artificialisation_0b) %>% + dplyr::mutate(date = as.character(lubridate::year(.data$date - 1))) %>% + dplyr::filter(.data$date < millesime_obs_artif, .data$date > millesime_obs_artif - 11) # conserve les 10 derniers millesimes +rm(observatoire_artificialisation_0a,observatoire_artificialisation_0b) + +xlsx::write.xlsx(observatoire_artificialisation_0,file = "inst/tableurs/obs_artif_flux_par_annee_2_4.xlsx") + +# somme des flux 10 ans +data <- observatoire_artificialisation_0 %>% + dplyr::select(.data$CodeZone, .data$TypeZone, .data$Zone, .data$date, .data$flux_naf_artificialisation_total) %>% + dplyr::mutate(flux_naf_artificialisation_total = .data$flux_naf_artificialisation_total / 10000) %>% + dplyr::arrange(.data$CodeZone) %>% + dplyr::group_by(.data$CodeZone, .data$TypeZone, .data$Zone) %>% + dplyr::summarise(`surf artificialisees 10 ans` = sum(.data$flux_naf_artificialisation_total, na.rm = T)) %>% + ungroup() + +xlsx::write.xlsx(data,file = "inst/tableurs/obs_artif_flux_10_ans_2_2_et_2_3_et_2_7.xlsx") +rm(observatoire_artificialisation_0) + + +# graphe 2_5 (source observatoire artificialisation) --------- + +data_dep_pdl <- observatoire_artificialisation %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::filter(.data$TypeZone == "D\u00e9partements") %>% + dplyr::arrange(.data$CodeZone) %>% + dplyr::mutate(Zone=factor(.data$Zone) %>% forcats::fct_inorder())%>% + dplyr::select(.data$TypeZone, + .data$CodeZone, + .data$Zone, + .data$date, + .data$flux_naf_artificialisation_activite, + .data$flux_naf_artificialisation_habitation, + .data$flux_naf_artificialisation_mixte) %>% + dplyr::mutate(Zone = forcats::fct_drop(.data$Zone)) %>% + dplyr::arrange(.data$Zone) %>% + dplyr::mutate(date = as.character(lubridate::year(.data$date - 1))) %>% + dplyr::filter(.data$date < millesime_obs_artif, .data$date > millesime_obs_artif - 11) %>% # conserve les 10 derniers millesimes + tidyr::gather(variable, valeur, .data$flux_naf_artificialisation_activite:.data$flux_naf_artificialisation_mixte) %>% + dplyr::mutate(valeur = .data$valeur / 10000) %>% + dplyr::mutate( + variable = replace(.data$variable, .data$variable == "flux_naf_artificialisation_activite", "activit\u00e9"), + variable = replace(.data$variable, .data$variable == "flux_naf_artificialisation_habitation", "habitation"), + variable = replace(.data$variable, .data$variable == "flux_naf_artificialisation_mixte", "mixte")) + +data_com_pdl <- observatoire_artificialisation %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::filter(.data$TypeZone == "Communes") %>% + dplyr::arrange(.data$CodeZone) %>% + dplyr::mutate(Zone=factor(.data$Zone) %>% forcats::fct_inorder())%>% + dplyr::select(.data$TypeZone, + .data$CodeZone, + .data$Zone, + .data$date, + .data$flux_naf_artificialisation_activite, + .data$flux_naf_artificialisation_habitation, + .data$flux_naf_artificialisation_mixte) %>% + dplyr::mutate(Zone = forcats::fct_drop(.data$Zone)) %>% + dplyr::arrange(.data$Zone) %>% + dplyr::mutate(date = as.character(lubridate::year(.data$date - 1))) %>% + dplyr::filter(.data$date < millesime_obs_artif, .data$date > millesime_obs_artif - 11) %>% # conserve les 10 derniers millesimes + tidyr::gather(variable, valeur, .data$flux_naf_artificialisation_activite:.data$flux_naf_artificialisation_mixte) %>% + dplyr::mutate(valeur = .data$valeur / 10000) %>% + dplyr::mutate( + variable = replace(.data$variable, .data$variable == "flux_naf_artificialisation_activite", "activit\u00e9"), + variable = replace(.data$variable, .data$variable == "flux_naf_artificialisation_habitation", "habitation"), + variable = replace(.data$variable, .data$variable == "flux_naf_artificialisation_mixte", "mixte")) + +data <- dplyr::bind_rows(data_com_pdl,data_dep_pdl) + +rm(data_com_pdl,data_dep_pdl) + +xlsx::write.xlsx(data,file = "inst/tableurs/obs_artif_2_5.xlsx") + + +# graphe 2_6 (source stock artificialisé) ------------ +stock_artificialise_0 <- COGiter::filtrer_cog(stock_artificialise, + reg = code_reg) +xlsx::write.xlsx(data,file = "inst/tableurs/stock_artif_origine.xlsx") + +data <- stock_artificialise_0 %>% + # dplyr::filter(.data$TypeZone == "Communes") %>% + dplyr::mutate(date = lubridate::year(.data$date)) %>% + dplyr::filter(.data$date == millesime_stock_artif | .data$date == millesime_debut) %>% + dplyr::select (-.data$surf_cadastree) %>% + dplyr::group_by(.data$CodeZone) %>% + dplyr::mutate(evolution = (.data$surface_artificialisee - dplyr::lag(.data$surface_artificialisee))*100/ dplyr::lag(.data$surface_artificialisee)) %>% + dplyr::ungroup() %>% + dplyr::arrange(.data$CodeZone) +rm(stock_artificialise_0) + +xlsx::write.xlsx(data,file = "inst/tableurs/stock_artif_evolution_2_6_et_2_8_et_3_1.xlsx") + + +# graphe 3_1 (sources population légale et stock artificialisé) --------- +millesime_population_debut <- millesime_population - (millesime_stock_artif - millesime_debut) + +evol_popul <- population_legale %>% + dplyr::mutate(date = lubridate::year(.data$date)) %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::filter(.data$date == millesime_population | .data$date == millesime_population_debut) %>% + dplyr::arrange(.data$TypeZone, .data$Zone, .data$CodeZone, .data$date) %>% + dplyr::group_by(.data$TypeZone, .data$Zone, .data$CodeZone) %>% + dplyr::mutate(evolution_population = round(.data$population_municipale * 100 / dplyr::lag(.data$population_municipale) - 100, 1)) %>% + dplyr::ungroup() %>% + dplyr::arrange(.data$CodeZone) + +xlsx::write.xlsx(evol_popul,file = "inst/tableurs/population_evolution_3_1.xlsx") + +rm(evol_popul) + +# graphe 3_3 (sources population légale et stock artificialisé) ----------------- +millesime_population_debut <- millesime_population - (millesime_stock_artif - millesime_debut) + +# seuils population +pop_3 <- 40000 +pop_2 <- 10000 +pop_1 <- 2000 + +# population du millesime +population <- population_legale %>% + dplyr::mutate(date=lubridate::year(.data$date)) %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::filter(.data$date == millesime_population, + .data$TypeZone =="Communes") %>% + dplyr::mutate(seuil_pop = dplyr::case_when( + .data$population_municipale > pop_3 ~ glue::glue("communes de plus\nde ",pop_3," habitants"), + .data$population_municipale > pop_2 ~ glue::glue("communes entre\n",pop_2," et ",pop_3, " habitants"), + .data$population_municipale > pop_1 ~ glue::glue("communes entre\n",pop_1," et ",pop_2, " habitants"), + .data$population_municipale > 0 ~ glue::glue("communes de moins\nde ",pop_1," habitants"), + TRUE ~ "") + ) %>% + dplyr::mutate(seuil_code = dplyr::case_when( + .data$population_municipale > pop_3 ~ "D", + .data$population_municipale > pop_2 ~ "C", + .data$population_municipale > pop_1 ~ "B", + .data$population_municipale > 0 ~ "A", + TRUE ~ "") + ) %>% + dplyr::rename ("population_n"="population_municipale") %>% + dplyr::select (-.data$date) + +# table des seuils +seuil_population <- population %>% + dplyr::select (.data$CodeZone,.data$seuil_pop) + + +# preparation des donnees evolution_artificialisation + +evol_artif <- stock_artificialise %>% + dplyr::mutate(date = lubridate::year(.data$date)) %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::filter(.data$TypeZone == "Communes", + .data$date == millesime_stock_artif | .data$date == millesime_debut) %>% + dplyr::select (-.data$surf_cadastree) + +evol_artif1 <- evol_artif %>% + dplyr::left_join(seuil_population) %>% + dplyr::mutate(dep = substr(.data$CodeZone,1,2)) %>% + dplyr::filter (.data$date == millesime_stock_artif) %>% + dplyr::group_by(.data$dep, .data$seuil_pop, .data$date) %>% + dplyr::summarise(surface_artificialisee = sum(.data$surface_artificialisee, na.rm = T)) %>% + dplyr::ungroup() %>% + dplyr::left_join(COGiter::departements %>% + dplyr::filter (.data$REG == code_reg) %>% + dplyr::select(.data$DEP, .data$NOM_DEP), + by=c("dep"= "DEP")) %>% + dplyr::rename("Zone" = "NOM_DEP") %>% + dplyr::select(-.data$dep) + +evol_artif1_2 <- evol_artif1 %>% + dplyr::group_by(.data$seuil_pop,.data$date) %>% + dplyr::summarise(surface_artificialisee = sum(.data$surface_artificialisee, na.rm = T)) %>% + dplyr::ungroup() %>% + dplyr::mutate(Zone = COGiter::regions %>% + dplyr::filter (.data$REG == code_reg) %>% + dplyr::pull(.data$NOM_REG)) + +evol_artif1 <-dplyr::bind_rows(evol_artif1,evol_artif1_2) %>% + dplyr::select(.data$seuil_pop, .data$Zone, .data$date, .data$surface_artificialisee) + +evol_artif2 <- evol_artif %>% + dplyr::left_join(seuil_population) %>% + dplyr::mutate(dep = substr(.data$CodeZone,1,2)) %>% + dplyr::filter (.data$date == millesime_debut) %>% + dplyr::group_by(.data$dep, .data$seuil_pop, .data$date) %>% + dplyr::summarise(surface_artificialisee = sum(.data$surface_artificialisee, na.rm = T)) %>% + dplyr::ungroup() %>% + dplyr::left_join(COGiter::departements %>% + dplyr::filter (.data$REG == code_reg) %>% + dplyr::select(.data$DEP, .data$NOM_DEP), + by=c("dep"= "DEP")) %>% + dplyr::rename("Zone" = "NOM_DEP") %>% + dplyr::select(-.data$dep) + +evol_artif2_2 <- evol_artif2 %>% + dplyr::group_by(.data$seuil_pop, .data$date) %>% + dplyr::summarise(surface_artificialisee = sum(.data$surface_artificialisee, na.rm = T)) %>% + dplyr::ungroup() %>% + dplyr::mutate(Zone = COGiter::regions %>% + dplyr::filter (.data$REG == code_reg) %>% + dplyr::pull(.data$NOM_REG)) + + +evol_artif2 <-dplyr::bind_rows(evol_artif2,evol_artif2_2) %>% + dplyr::select(.data$seuil_pop, .data$Zone, .data$date, .data$surface_artificialisee) + +evol_artif3 <- rbind(evol_artif1,evol_artif2) %>% #regroupement des annees + dplyr::arrange(.data$seuil_pop, .data$Zone, .data$date) %>% + dplyr::group_by(.data$seuil_pop, .data$Zone) %>% + dplyr::mutate(evolution_artificialisation = round(.data$surface_artificialisee * 100 / dplyr::lag(.data$surface_artificialisee) - 100, 1)) %>% + dplyr::ungroup() %>% + dplyr::filter(.data$date == millesime_stock_artif) %>% + dplyr::select(.data$seuil_pop, .data$Zone, .data$evolution_artificialisation) + +# preparation des donnees evol_population + +evol_popul <- population_legale %>% + dplyr::mutate(date = lubridate::year(.data$date)) %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::filter(.data$TypeZone == "Communes", + .data$date == millesime_population | .data$date == millesime_population_debut) + +evol_popul1 <- evol_popul %>% + dplyr::left_join(seuil_population) %>% + dplyr::mutate(dep = substr(.data$CodeZone,1,2)) %>% + dplyr::filter (.data$date == millesime_population) %>% + dplyr::group_by(.data$dep, .data$seuil_pop, .data$date) %>% + dplyr::summarise(population_municipale = sum(.data$population_municipale, na.rm = T)) %>% + dplyr::ungroup() %>% + dplyr::left_join(COGiter::departements %>% + dplyr::filter (.data$REG == code_reg) %>% + dplyr::select(.data$DEP, .data$NOM_DEP), + by=c("dep"= "DEP")) %>% + dplyr::rename("Zone" = "NOM_DEP") %>% + dplyr::select(-.data$dep) + +evol_popul1_2 <- evol_popul1 %>% + dplyr::group_by(.data$seuil_pop, .data$date) %>% + dplyr::summarise(population_municipale = sum(.data$population_municipale, na.rm = T)) %>% + dplyr::ungroup() %>% + dplyr::mutate(Zone = COGiter::regions %>% + dplyr::filter (.data$REG == code_reg) %>% + dplyr::pull(.data$NOM_REG)) + +evol_popul1 <-dplyr::bind_rows(evol_popul1,evol_popul1_2) %>% + dplyr::select(.data$seuil_pop, .data$Zone, .data$date, .data$population_municipale) + +evol_popul2 <- evol_popul %>% + dplyr::left_join(seuil_population) %>% + dplyr::mutate(dep = substr(.data$CodeZone,1,2)) %>% + dplyr::filter (.data$date == millesime_population_debut) %>% + dplyr::group_by(.data$dep, .data$seuil_pop, .data$date) %>% + dplyr::summarise(population_municipale = sum(.data$population_municipale, na.rm = T)) %>% + dplyr::ungroup() %>% + dplyr::left_join(COGiter::departements %>% + dplyr::filter (.data$REG == code_reg) %>% + dplyr::select(.data$DEP, .data$NOM_DEP), + by=c("dep"= "DEP")) %>% + dplyr::rename("Zone" = "NOM_DEP") %>% + dplyr::select(-.data$dep) + +evol_popul2_2 <- evol_popul2 %>% + dplyr::group_by(.data$seuil_pop, .data$date) %>% + dplyr::summarise(population_municipale = sum(.data$population_municipale, na.rm = T)) %>% + dplyr::ungroup() %>% + dplyr::mutate(Zone = COGiter::regions %>% + dplyr::filter (.data$REG == code_reg) %>% + dplyr::pull(.data$NOM_REG)) + +evol_popul2 <-dplyr::bind_rows(evol_popul2,evol_popul2_2) %>% + dplyr::select(.data$seuil_pop, .data$Zone, .data$date, .data$population_municipale) + +evol_popul3 <- rbind(evol_popul1,evol_popul2) %>% #regroupement des annees + dplyr::arrange(.data$seuil_pop, .data$Zone, .data$date) %>% + dplyr::group_by(.data$seuil_pop, .data$Zone) %>% + dplyr::mutate(evolution_population = round(.data$population_municipale * 100 / dplyr::lag(.data$population_municipale) - 100, 1)) %>% + dplyr::ungroup() %>% + dplyr::filter(.data$date == millesime_population) %>% + dplyr::select(.data$seuil_pop, .data$Zone, .data$evolution_population) + +data <- evol_artif3 %>% + dplyr::full_join(evol_popul3) %>% + dplyr::mutate(`Seuil de population` = factor(.data$seuil_pop, levels = c(glue::glue("communes de moins\nde ",pop_1," habitants"), + glue::glue("communes entre\n",pop_1," et ",pop_2, " habitants"), + glue::glue("communes entre\n",pop_2," et ",pop_3, " habitants"), + glue::glue("communes de plus\nde ",pop_3," habitants")))) %>% + dplyr::select(`Seuil de population`,dplyr::everything(),-seuil_pop) + +rm(population,seuil_population) +rm(evol_artif,evol_artif1,evol_artif1_2,evol_artif2,evol_artif2_2,evol_artif3) +rm(evol_popul,evol_popul1,evol_popul1_2,evol_popul2,evol_popul2_2,evol_popul3) + +xlsx::write.xlsx(data,file = "inst/tableurs/stock_artif_population_3_3.xlsx") + + +# graphe 3_4 (sources population légale et stock artificialisé) ------------ +# code_reg <- "52" +# millesime_population <- 2019 +# millesime_stock_artif <- 2020 +# millesime_debut <- 2016 +millesime_debut_population <- millesime_population - (millesime_stock_artif - millesime_debut) +millesime_fin_population <- millesime_population + +stock_depart <- stock_artificialise %>% + dplyr::mutate(date=lubridate::year(.data$date)) %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::filter(.data$date == millesime_debut) %>% + dplyr::mutate(surface_artificialisee = .data$surface_artificialisee) %>% + dplyr::select (-.data$surf_cadastree,-.data$date) %>% + dplyr::rename ("stock_depart"="surface_artificialisee") + +# preparation des flux +flux <- stock_artificialise %>% + dplyr::mutate(date=lubridate::year(.data$date)) %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::filter((.data$date == millesime_debut) |(.data$date == millesime_stock_artif)) %>% + dplyr::select (-.data$surf_cadastree) %>% + dplyr::arrange(.data$TypeZone, .data$Zone, .data$CodeZone, .data$date) %>% + dplyr::group_by(.data$TypeZone, .data$Zone, .data$CodeZone) %>% + dplyr::mutate(flux_artificialisation = .data$surface_artificialisee - dplyr::lag(.data$surface_artificialisee) ) %>% + dplyr::ungroup() %>% + dplyr::filter(.data$date == millesime_stock_artif) %>% + dplyr::select (-.data$date , -.data$surface_artificialisee) + +# preparation des donnees population +evol_popul <- population_legale %>% + dplyr::mutate(date=lubridate::year(.data$date)) %>% + COGiter::filtrer_cog(reg = code_reg) %>% + dplyr::filter(.data$date == millesime_debut_population | .data$date == millesime_fin_population) + +popul_debut <- evol_popul %>% + dplyr::filter(.data$date == millesime_debut_population) %>% + dplyr::rename ("population_debut"="population_municipale") %>% + dplyr::select (-.data$date) + +evol_popul <- evol_popul %>% + dplyr::filter(.data$date %in% c(millesime_debut_population,millesime_fin_population)) %>% + dplyr::arrange(.data$date) %>% + dplyr::group_by(.data$TypeZone,.data$Zone,.data$CodeZone) %>% + dplyr::mutate(evolution_population=.data$population_municipale - dplyr::lag(.data$population_municipale)) %>% + dplyr::ungroup() %>% + dplyr::filter(.data$date %in% c(millesime_fin_population)) %>% + dplyr::select(.data$TypeZone,.data$Zone,.data$CodeZone,.data$evolution_population) + +data <- stock_depart %>% + dplyr::left_join(flux) %>% + dplyr::left_join(popul_debut) %>% + dplyr::left_join(evol_popul) %>% + dplyr::mutate(surf_artif_par_hab_an=.data$stock_depart / .data$population_debut *10000 ) %>% + dplyr::mutate(surf_artif_par_nouv_hab =.data$flux_artificialisation / .data$evolution_population *10000) %>% + dplyr::select (.data$TypeZone,.data$CodeZone,.data$Zone,.data$surf_artif_par_hab_an,.data$surf_artif_par_nouv_hab) %>% + tidyr::gather(variable, valeur, 4:5) %>% + # dplyr::arrange(desc(.data$TypeZone),desc(.data$Zone)) %>% + dplyr::mutate(variable=forcats::fct_relevel(.data$variable,"surf_artif_par_nouv_hab","surf_artif_par_hab_an")) %>% + dplyr::mutate(Zone = forcats::fct_drop(.data$Zone) %>% + forcats::fct_inorder()) %>% + dplyr::mutate(valeur = ifelse(.data$valeur<0, 0, valeur)) + +rm(stock_depart,flux,evol_popul,popul_debut) + +xlsx::write.xlsx(data,file = "inst/tableurs/stock_artif_population_3_4_et_4_2.xlsx") diff --git a/data-raw/dataprep.R b/data-raw/dataprep.R index 461ced94e971518faf54e00f10f0537906d8b39e..3d99eb930fb39bde51100771762d64a0e93408ec 100644 --- a/data-raw/dataprep.R +++ b/data-raw/dataprep.R @@ -56,7 +56,7 @@ teruti <- read.csv2("extdata/FDS_W0020_Moy-2017-2018-2019.csv", as.is = TRUE, en # téléchargement des tables sur le SGBD ------------- -observatoire_artificialisation <- importer_data(db = "datamart", +observatoire_artificialisation <- importer_data(db = "datamart", #surface en m2 schema = "portrait_territoires", table = "cogifiee_observatoire_artificialisation") @@ -68,7 +68,7 @@ population_legale <- importer_data(db = "datamart", schema = "portrait_territoires", table = "cogifiee_population_legale") -ocsge <- importer_data(db = "datamart", +ocsge <- importer_data(db = "datamart", #surface en m2 schema = "portrait_territoires", table = "cogifiee_ocsge") diff --git a/inst/tableurs/obs_artif_2_5.xlsx b/inst/tableurs/obs_artif_2_5.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..df77701e392ee5192a631a8eee57dbb950c302cd Binary files /dev/null and b/inst/tableurs/obs_artif_2_5.xlsx differ diff --git a/inst/tableurs/obs_artif_flux_10_ans_2_2_et_2_3_et_2_7.xlsx b/inst/tableurs/obs_artif_flux_10_ans_2_2_et_2_3_et_2_7.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..cb6690eba5f0ff43eebd1ecb55ab707a388119ed Binary files /dev/null and b/inst/tableurs/obs_artif_flux_10_ans_2_2_et_2_3_et_2_7.xlsx differ diff --git a/inst/tableurs/obs_artif_flux_par_annee_2_4.xlsx b/inst/tableurs/obs_artif_flux_par_annee_2_4.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..c5345c3efb70e34187d6dcb9783c9c13f44c4394 Binary files /dev/null and b/inst/tableurs/obs_artif_flux_par_annee_2_4.xlsx differ diff --git a/inst/tableurs/ocsge_1_3.xlsx b/inst/tableurs/ocsge_1_3.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..e8bb7ab7e278032550405890c6fc2820a0452f73 Binary files /dev/null and b/inst/tableurs/ocsge_1_3.xlsx differ diff --git a/inst/tableurs/ocsge_1_6_et_1_7.xlsx b/inst/tableurs/ocsge_1_6_et_1_7.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..14e48ae2fdccbd1e24a6af658378aa911df74f9e Binary files /dev/null and b/inst/tableurs/ocsge_1_6_et_1_7.xlsx differ diff --git a/inst/tableurs/population_evolution_3_1.xlsx b/inst/tableurs/population_evolution_3_1.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..dac79f127b4b8a939b83d9346f5d800c5471b1b7 Binary files /dev/null and b/inst/tableurs/population_evolution_3_1.xlsx differ diff --git a/inst/tableurs/stock_artif_evolution_2_6_et_2_8_et_3_1.xlsx b/inst/tableurs/stock_artif_evolution_2_6_et_2_8_et_3_1.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..9d483353b6d8ad75ae66f88c334cc42957486b46 Binary files /dev/null and b/inst/tableurs/stock_artif_evolution_2_6_et_2_8_et_3_1.xlsx differ diff --git a/inst/tableurs/stock_artif_origine.xlsx b/inst/tableurs/stock_artif_origine.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..fca9905d833cd9c90d8030563b488bb20dbbd717 Binary files /dev/null and b/inst/tableurs/stock_artif_origine.xlsx differ diff --git a/inst/tableurs/stock_artif_population_3_3.xlsx b/inst/tableurs/stock_artif_population_3_3.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..f632607750f6134b678a42dd5c22569bd0cf95b5 Binary files /dev/null and b/inst/tableurs/stock_artif_population_3_3.xlsx differ diff --git a/inst/tableurs/stock_artif_population_3_4_et_4_2.xlsx b/inst/tableurs/stock_artif_population_3_4_et_4_2.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..b76f3fe1a5ab4ab9a6b723f69ba72ae056a08f16 Binary files /dev/null and b/inst/tableurs/stock_artif_population_3_4_et_4_2.xlsx differ