diff --git a/R/creer_graphe_5_2.R b/R/creer_graphe_5_2.R index e4a64c34bef58fe737c033feb5f3d36db3125bea..1bdffb0d1a7a84b83ff79888d9e007f77b299fee 100644 --- a/R/creer_graphe_5_2.R +++ b/R/creer_graphe_5_2.R @@ -24,20 +24,22 @@ creer_graphe_5_2 <- function(millesime_obs_artif,code_reg) { code_reg = as.character(code_reg) } + datemax <- lubridate::ymd(paste0(millesime_obs_artif,'0101')) + + datemin <- datemax - lubridate::years(9) + datefin <- datemax + lubridate::years(10) + # datefin <- as.Date("2031-01-01") + millesime_fin <- millesime_obs_artif + 9 + pas <- millesime_obs_artif - lubridate::year(datemin) + data <- observatoire_artificialisation %>% COGiter::filtrer_cog(reg = code_reg) %>% dplyr::filter(.data$TypeZone %in% c("R\u00e9gions","D\u00e9partements")) %>% dplyr::select(.data$TypeZone,.data$Zone,.data$date,.data$flux_naf_artificialisation_total) %>% dplyr::arrange(.data$TypeZone,.data$Zone,.data$date) %>% dplyr::mutate(simul=FALSE, - flux_naf_artificialisation_total = .data$flux_naf_artificialisation_total / 10000) - - datemax <- lubridate::ymd(paste0(millesime_obs_artif,'0101')) - datemin <- min(data$date) - datefin <- datemax + lubridate::years(10) - # datefin <- as.Date("2031-01-01") - millesime_fin <- millesime_obs_artif + 9 - pas <- millesime_obs_artif - lubridate::year(datemin) + flux_naf_artificialisation_total = .data$flux_naf_artificialisation_total / 10000) %>% + dplyr::filter(.data$date >= datemin) simul <- data %>% dplyr::filter(.data$date %in% c(datemin,datemax)) %>%